Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mov Ecol ; 12(1): 11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303081

RESUMO

Understanding drivers of space use by African elephants is critical to their conservation and management, particularly given their large home-ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement in human-elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community-owned wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking data from 49 elephants with spatial covariate information to compare elephant selection across these management zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time-of-day. Our results showed that the strongest selection by elephants was for closed-canopy forest and the strongest avoidance was for open-cover, but that selection behavior varied significantly by management zone and selection for cover was accentuated in human-dominated areas. When contrasting selection parameters according to strata, variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plasticity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection behavior was greatest between sexes, followed by time-of-day, then management zone and finally season (where seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cognitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African elephants and builds our capacity for both management and conservation.

2.
Mov Ecol ; 12(1): 9, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287406
3.
Mov Ecol ; 11(1): 74, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037089

RESUMO

Contact among animals is crucial for various ecological processes, including social behaviors, disease transmission, and predator-prey interactions. However, the distribution of contact events across time and space is heterogeneous, influenced by environmental factors and biological purposes. Previous studies have assumed that areas with abundant resources and preferred habitats attract more individuals and, therefore, lead to more contact. To examine the accuracy of this assumption, we used a use-available framework to compare landscape factors influencing the location of contacts between wild pigs (Sus scrofa) in two study areas in Florida and Texas (USA) from those influencing non-contact space use. We employed a contact-resource selection function (RSF) model, where contact locations were defined as used points and locations without contact as available points. By comparing outputs from this contact RSF with a general, population-level RSF, we assessed the factors driving both habitat selection and contact. We found that the landscape predictors (e.g., wetland, linear features, and food resources) played different roles in habitat selection from contact processes for wild pigs in both study areas. This indicated that pigs interacted with their landscapes differently when choosing habitats compared to when they encountered other individuals. Consequently, relying solely on the spatial overlap of individual or population-level RSF models may lead to a misleading understanding of contact-related ecology. Our findings challenge prevailing assumptions about contact and introduce innovative approaches to better understand the ecological drivers of spatially explicit contact. By accurately predicting the spatial distribution of contact events, we can enhance our understanding of contact based ecological processes and their spatial dynamics.

4.
R Soc Open Sci ; 10(7): 230337, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416829

RESUMO

Individual animals should adjust diets according to food availability. We used DNA metabarcoding to construct individual-level dietary timeseries for elephants from two family groups in Kenya varying in habitat use, social position and reproductive status. We detected at least 367 dietary plant taxa, with up to 137 unique plant sequences in one fecal sample. Results matched well-established trends: elephants tended to eat more grass when it rained and other plants when dry. Nested within these switches from 'grazing' to 'browsing' strategies, dietary DNA revealed seasonal shifts in food richness, composition and overlap between individuals. Elephants of both families converged on relatively cohesive diets in dry seasons but varied in their maintenance of cohesion during wet seasons. Dietary cohesion throughout the timeseries of the subdominant 'Artists' family was stronger and more consistently positive compared to the dominant 'Royals' family. The greater degree of individuality within the dominant family's timeseries could reflect more divergent nutritional requirements associated with calf dependency and/or priority access to preferred habitats. Whereas theory predicts that individuals should specialize on different foods under resource scarcity, our data suggest family bonds may promote cohesion and foster the emergence of diverse feeding cultures reflecting links between social behaviour and nutrition.

5.
Pest Manag Sci ; 79(10): 3819-3829, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37218996

RESUMO

BACKGROUND: Data on the movement behavior of translocated wild pigs is needed to develop appropriate response strategies for containing and eliminating new source populations following translocation events. We conducted experimental trials to compare the home range establishment and space-use metrics, including the number of days and distance traveled before becoming range residents, for wild pigs translocated with their social group and individually. RESULTS: We found wild pigs translocated with their social group made less extensive movements away from the release location and established a stable home range ~5 days faster than those translocated individually. We also examined how habitat quality impacted the home range sizes of translocated wild pigs and found wild pigs maintained larger ranges in areas with higher proportion of low-quality habitat. CONCLUSION: Collectively, our findings suggest translocations of invasive wild pigs have a greater probability of establishing a viable population near the release site when habitat quality is high and when released with members of their social unit compared to individuals moved independent of their social group or to low-quality habitat. However, all wild pigs translocated in our study made extensive movements from their release location, highlighting the potential for single translocation events of either individuals or groups to have far-reaching consequences within a much broader landscape beyond the location where they are released. These results highlight the challenges associated with containing populations in areas where illegal introduction of wild pigs occurs, and the need for rapid response once releases are identified. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ecossistema , Sus scrofa , Animais , Suínos , Sus scrofa/fisiologia , Comportamento de Retorno ao Território Vital , Movimento , Estrutura Social
6.
Ecol Evol ; 13(3): e9774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36993145

RESUMO

Quantifying spatiotemporally explicit interactions within animal populations facilitates the understanding of social structure and its relationship with ecological processes. Data from animal tracking technologies (Global Positioning Systems ["GPS"]) can circumvent longstanding challenges in the estimation of spatiotemporally explicit interactions, but the discrete nature and coarse temporal resolution of data mean that ephemeral interactions that occur between consecutive GPS locations go undetected. Here, we developed a method to quantify individual and spatial patterns of interaction using continuous-time movement models (CTMMs) fit to GPS tracking data. We first applied CTMMs to infer the full movement trajectories at an arbitrarily fine temporal scale before estimating interactions, thus allowing inference of interactions occurring between observed GPS locations. Our framework then infers indirect interactions-individuals occurring at the same location, but at different times-while allowing the identification of indirect interactions to vary with ecological context based on CTMM outputs. We assessed the performance of our new method using simulations and illustrated its implementation by deriving disease-relevant interaction networks for two behaviorally differentiated species, wild pigs (Sus scrofa) that can host African Swine Fever and mule deer (Odocoileus hemionus) that can host chronic wasting disease. Simulations showed that interactions derived from observed GPS data can be substantially underestimated when temporal resolution of movement data exceeds 30-min intervals. Empirical application suggested that underestimation occurred in both interaction rates and their spatial distributions. CTMM-Interaction method, which can introduce uncertainties, recovered majority of true interactions. Our method leverages advances in movement ecology to quantify fine-scale spatiotemporal interactions between individuals from lower temporal resolution GPS data. It can be leveraged to infer dynamic social networks, transmission potential in disease systems, consumer-resource interactions, information sharing, and beyond. The method also sets the stage for future predictive models linking observed spatiotemporal interaction patterns to environmental drivers.

7.
Proc Biol Sci ; 289(1988): 20221969, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475444

RESUMO

Animal migrations are some of the most ubiquitous and one of the most threatened ecological processes globally. A wide range of migratory behaviours occur in nature, and this behaviour is not uniform among and within species, where even individuals in the same population can exhibit differences. While the environment largely drives migratory behaviour, it is necessary to understand the genetic mechanisms influencing migration to elucidate the potential of migratory species to cope with novel conditions and adapt to environmental change. In this study, we identified genes associated with a migratory trait by undertaking pooled genome-wide scans on a natural population of migrating mule deer. We identified genomic regions associated with variation in migratory direction, including FITM1, a gene linked to the formation of lipids, and DPPA3, a gene linked to epigenetic modifications of the maternal line. Such a genetic basis for a migratory trait contributes to the adaptive potential of the species and might affect the flexibility of individuals to change their behaviour in the face of changes in their environment.


Assuntos
Cervos , Animais , Cervos/genética , Genômica
8.
Ecol Evol ; 12(9): e9288, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177134

RESUMO

Climatic variability, resource availability, and anthropogenic impacts heavily influence an animal's home range. This makes home range size an effective metric for understanding how variation in environmental factors alter the behavior and spatial distribution of animals. In this study, we estimated home range size of African elephants (Loxodonta africana) across four sites in Namibia, along a gradient of precipitation and human impact, and investigated how these gradients influence the home range size on regional and site scales. Additionally, we estimated the time individuals spent within protected area boundaries. The mean 50% autocorrelated kernel density estimate for home range was 2200 km2 [95% CI:1500-3100 km2]. Regionally, precipitation and vegetation were the strongest predictors of home range size, accounting for a combined 53% of observed variation. However, different environmental covariates explained home range variation at each site. Precipitation predicted most variation (up to 74%) in home range sizes (n = 66) in the drier western sites, while human impacts explained 71% of the variation in home range sizes (n = 10) in Namibia's portion of the Kavango-Zambezi Transfrontier Conservation Area. Elephants in all study areas maintained high fidelity to protected areas, spending an average of 85% of time tracked on protected lands. These results suggest that while most elephant space use in Namibia is driven by natural dynamics, some elephants are experiencing changes in space use due to human modification.

9.
Conserv Physiol ; 10(1): coac053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919453

RESUMO

Orphans of several species suffer social and physiological consequences such as receiving more aggression from conspecifics and lower survival. One physiological consequence of orphaning, stunted growth, has been identified in both humans and chimpanzees, but has not been assessed in a non-primate species. Here, we tested whether wild African elephant orphans show evidence of stunted growth. We measured individually known female elephants in the Samburu and Buffalo Springs National Reserves of Kenya, with a rangefinder capable of calculating height, to estimate a von Bertalanffy growth curve for female elephants of the study population. We then compared measurements of known orphans and non-orphans of various ages, using a Bayesian analysis to assess variation around the derived growth curve. We found that orphans are shorter for their age than non-orphans. However, results suggest orphans may partially compensate for stunting through later growth, as orphans who had spent a longer time without their mother had heights more similar to non-orphans. More age mates in an individual's family were associated with taller height, suggesting social support from peers may contribute to increased growth. Conversely, more adult females in an individual's family were associated with shorter height, suggesting within-group competition for resources with older individuals may reduce juvenile growth. Finally, we found a counterintuitive result that less rainfall in the first 6 years of life was correlated with taller height, potentially reflecting the unavoidable bias of measuring individuals who were fit enough to survive conditions of low rainfall as young calves. Reduced growth of individuals has been shown to reduce survival and reproduction in other species. As such, stunting in wildlife orphans may negatively affect fitness and represents an indirect effect of ivory poaching on African elephants.

10.
Ecol Lett ; 25(8): 1760-1782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35791088

RESUMO

Pathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an 'epidemiological landscape' connecting the environment to specific locations where transmissions occur. Conventionally, the epidemiological landscape has been described in terms of the geographical coordinates where hosts or pathogens are located. We advocate for an alternative approach that relates those locations to attributes of the local environment. Environmental descriptions can strengthen epidemiological forecasts by allowing for predictions even when local geographical data are not available. Environmental predictions are more accessible than ever thanks to new tools from movement ecology, and we introduce a 'movement-pathogen pace of life' heuristic to help identify aspects of movement that have the most influence on spatial epidemiology. By linking pathogen transmission directly to the environment, the epidemiological landscape offers an efficient path for using environmental information to inform models describing when and where transmission will occur.


Assuntos
Transmissão de Doença Infecciosa , Ecologia , Epidemiologia , Movimento , Geografia
11.
J Anim Ecol ; 91(8): 1693-1706, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35535017

RESUMO

Individual variation in habitat selection and movement behaviour is receiving growing attention, but primarily with respect to characterizing behaviours in different contexts as opposed to decomposing structure in behaviour within populations. This focus may be limiting advances in understanding the diversity of individual behaviour and its influence on population organization. We propose a framework for characterizing variation in space-use behaviour with the aim of advancing interpretation of its form and function. Using outputs from integrated step-selection analyses of 20 years of telemetry data from African elephants Loxodonta Africana, we developed four metrics characterizing differentiation in resource selection behaviour within a population (specialization [magnitude of the response independent of direction], heterogeneity [inter-individual variation], consistency [temporal shift in response] and reversal [frequency of directional changes in the response]). We contrasted insight from the developed metrics relative to the mean population response using an example focused on two covariates. We then expanded this contrast by evaluating if the metrics identify structurally important information on seasonal shifts in resource selection behaviours in addition to that provided by mean selection coefficients through principal component analyses (PCAs) and a random forest classification. The simplified example highlighted that for some covariates focusing on the population average failed to capture complex individual variation in behaviours. The PCAs revealed that the developed metrics provided additional information in explaining the patterns in elephant selection beyond that offered by population average covariate values. For elephants, specialization and heterogeneity were informative, with specialization often being a better descriptor of differences in seasonal resource selection behaviour than population average responses. Summarizing these metrics spatially and temporally, we illustrate how these metrics can provide insights on overlooked aspects of animal behaviour. Our work offers a new approach in how we conceptualize variation in space-use behaviour (i.e. habitat selection and movement) by providing ways of encapsulating variation that enables diagnoses of the drivers of individual-level variability in a population. The developed metrics explicitly distil how variation in a behaviour is structured among individuals and over time which could facilitate comparative work across time, populations or strata within populations.


Assuntos
Benchmarking , Elefantes , Animais , Comportamento Animal , Ecossistema , Comportamento Espacial
12.
Sci Rep ; 12(1): 4802, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314713

RESUMO

Amid accelerating threats to species and ecosystems, technology advancements to monitor, protect, and conserve biodiversity have taken on increased importance. While most innovations stem from adaptation of off-the-shelf devices, these tools can fail to meet the specialized needs of conservation and research or lack the support to scale beyond a single site. Despite calls from the conservation community for its importance, a shift to bottom-up innovation driven by conservation professionals remains limited. We surveyed practitioners, academic researchers, and technologists to understand the factors contributing to or inhibiting engagement in the collaborative process of technology development and adoption for field use and identify emerging technology needs. High cost was the main barrier to technology use across occupations, while development of new technologies faced barriers of cost and partner communication. Automated processing of data streams was the largest emerging need, and respondents focused mainly on applications for individual-level monitoring and automated image processing. Cross-discipline collaborations and expanded funding networks that encourage cyclical development and continued technical support are needed to address current limitations and meet the growing need for conservation technologies.


Assuntos
Biodiversidade , Ecossistema , Tecnologia
13.
Ecol Lett ; 25(5): 1290-1304, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257466

RESUMO

The ongoing explosion of fine-resolution movement data in animal systems provides a unique opportunity to empirically quantify spatial, temporal and individual variation in transmission risk and improve our ability to forecast disease outbreaks. However, we lack a generalizable model that can leverage movement data to quantify transmission risk and how it affects pathogen invasion and persistence on heterogeneous landscapes. We developed a flexible model 'Movement-driven modelling of spatio-temporal infection risk' (MoveSTIR) that leverages diverse data on animal movement to derive metrics of direct and indirect contact by decomposing transmission into constituent processes of contact formation and duration and pathogen deposition and acquisition. We use MoveSTIR to demonstrate that ignoring fine-scale animal movements on actual landscapes can mis-characterize transmission risk and epidemiological dynamics. MoveSTIR unifies previous work on epidemiological contact networks and can address applied and theoretical questions at the nexus of movement and disease ecology.


Assuntos
Ecologia , Movimento , Animais , Surtos de Doenças
14.
Ecol Appl ; 32(4): e2568, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138667

RESUMO

Oral baiting is used to deliver vaccines to wildlife to prevent, control, and eliminate infectious diseases. A central challenge is how to spatially distribute baits to maximize encounters by target animal populations, particularly in urban and suburban areas where wildlife such as raccoons (Procyon lotor) are abundant and baits are delivered along roads. Methods from movement ecology that quantify movement and habitat selection could help to optimize baiting strategies by more effectively targeting wildlife populations across space. We developed a spatially explicit, individual-based model of raccoon movement and oral rabies vaccine seroconversion to examine whether and when baiting strategies that match raccoon movement patterns perform better than currently used baiting strategies in an oral rabies vaccination zone in greater Burlington, Vermont, USA. Habitat selection patterns estimated from locally radio-collared raccoons were used to parameterize movement simulations. We then used our simulations to estimate raccoon population rabies seroprevalence under currently used baiting strategies (actual baiting) relative to habitat selection-based baiting strategies (habitat baiting). We conducted simulations on the Burlington landscape and artificial landscapes that varied in heterogeneity relative to Burlington in the proportion and patch size of preferred habitats. We found that the benefits of habitat baiting strongly depended on the magnitude and variability of raccoon habitat selection and the degree of landscape heterogeneity within the baiting area. Habitat baiting improved seroprevalence over actual baiting for raccoons characterized as habitat specialists but not for raccoons that displayed weak habitat selection similar to radiocollared individuals, except when baits were delivered off roads where preferred habitat coverage and complexity was more pronounced. In contrast, in artificial landscapes with either more strongly juxtaposed favored habitats and/or higher proportions of favored habitats, habitat baiting performed better than actual baiting, even when raccoons displayed weak habitat preferences and where baiting was constrained to roads. Our results suggest that habitat selection-based baiting could increase raccoon population seroprevalence in urban-suburban areas, where practical, given the heterogeneity and availability of preferred habitat types in those areas. Our novel simulation approach provides a flexible framework to test alternative baiting strategies in multiclass landscapes to optimize bait-distribution strategies.


Assuntos
Vacina Antirrábica , Raiva , Administração Oral , Animais , Animais Selvagens , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Guaxinins , Estudos Soroepidemiológicos , Vacinação/métodos , Vacinação/veterinária
15.
Ecol Appl ; 32(3): e2532, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044025

RESUMO

Understanding factors that influence real-world public conservation behaviors is critical for developing successful conservation policies and management actions. Citizens of Colorado, USA recently passed a ballot initiative to restore the gray wolf to its former range within the state. The >3 million votes offer an unprecedented opportunity to test factors that influenced decisions to support or oppose this conservation action. We created spatial linear regression models to assess the relationship between support for wolf restoration and (1) the presidential vote, (2) distance to conservation intervention (i.e., proposed wolf reintroduction and existing wolves), and measures of (3) livelihood and (4) demographics using precinct-level data. Our results demonstrate the strong relationship between support for wolf restoration and political support for the Democratic candidate for president in the 2020 election, and highlight how other factors, including increased age, participation in elk hunting, and proximity to the reintroduction region were associated with less support. Our findings underscore the critical role of politicization on public conservation action and the need to develop outreach and engagement strategies to mitigate polarization.


Assuntos
Lobos , Animais , Colorado , Conservação dos Recursos Naturais , Modelos Lineares , Política
16.
Sci Data ; 9(1): 8, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042854

RESUMO

The savannas of the Kenya-Tanzania borderland cover >100,000 km2 and is one of the most important regions globally for biodiversity conservation, particularly large mammals. The region also supports >1 million pastoralists and their livestock. In these systems, resources for both large mammals and pastoralists are highly variable in space and time and thus require connected landscapes. However, ongoing fragmentation of (semi-)natural vegetation by smallholder fencing and expansion of agriculture threatens this social-ecological system. Spatial data on fences and agricultural expansion are localized and dispersed among data owners and databases. Here, we synthesized data from several research groups and conservation NGOs and present the first release of the Landscape Dynamics (landDX) spatial-temporal database, covering ~30,000 km2 of southern Kenya. The data includes 31,000 livestock enclosures, nearly 40,000 kilometres of fencing, and 1,500 km2 of agricultural land. We provide caveats and interpretation of the different methodologies used. These data are useful to answer fundamental ecological questions, to quantify the rate of change of ecosystem function and wildlife populations, for conservation and livestock management, and for local and governmental spatial planning.


Assuntos
Animais Selvagens , Biodiversidade , Pradaria , Agricultura , Animais , Conservação dos Recursos Naturais , Bases de Dados Factuais , Quênia , Gado , Mamíferos , Análise Espaço-Temporal , Tanzânia
17.
Conserv Biol ; 36(3): e13871, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34904294

RESUMO

Conservation technology holds the potential to vastly increase conservationists' ability to understand and address critical environmental challenges, but systemic constraints appear to hamper its development and adoption. Understanding of these constraints and opportunities for advancement remains limited. We conducted a global online survey of 248 conservation technology users and developers to identify perceptions of existing tools' current performance and potential impact, user and developer constraints, and key opportunities for growth. We also conducted focus groups with 45 leading experts to triangulate findings. The technologies with the highest perceived potential were machine learning and computer vision, eDNA and genomics, and networked sensors. A total of 95%, 94%, and 92% respondents, respectively, rated them as very helpful or game changers. The most pressing challenges affecting the field as a whole were competition for limited funding, duplication of efforts, and inadequate capacity building. A total of 76%, 67%, and 55% respondents, respectively, identified these as primary concerns. The key opportunities for growth identified in focus groups were increasing collaboration and information sharing, improving the interoperability of tools, and enhancing capacity for data analyses at scale. Some constraints appeared to disproportionately affect marginalized groups. Respondents in countries with developing economies were more likely to report being constrained by upfront costs, maintenance costs, and development funding (p = 0.048, odds ratio [OR] = 2.78; p = 0.005, OR = 4.23; p = 0.024, OR = 4.26), and female respondents were more likely to report being constrained by development funding and perceived technical skills (p = 0.027, OR = 3.98; p = 0.048, OR = 2.33). To our knowledge, this is the first attempt to formally capture the perspectives and needs of the global conservation technology community, providing foundational data that can serve as a benchmark to measure progress. We see tremendous potential for this community to further the vision they define, in which collaboration trumps competition; solutions are open, accessible, and interoperable; and user-friendly processing tools empower the rapid translation of data into conservation action. Article impact statement: Addressing financing, coordination, and capacity-building constraints is critical to the development and adoption of conservation technology.


La tecnología de conservación tiene el potencial para incrementar considerablemente la habilidad de los conservacionistas para entender y lidiar con los retos ambientales más importantes, pero las restricciones sistémicas parecen dificultar su desarrollo y adopción. La comprensión de estas restricciones y las oportunidades para el avance todavía son limitadas. Encuestamos en línea a 248 usuarios y programadores mundiales de tecnología de conservación para identificar las percepciones existentes del desempeño e impacto potencial de las herramientas actuales, restricciones para los usuarios y programadores y oportunidades clave para el crecimiento. También realizamos grupos de discusión con 45 expertos destacados para triangular los hallazgos. Las tecnologías con el potencial percibido más alto fueron el aprendizaje mecánico y la visión por computadora, la genómica y el eADN y los sensores en red. El 95%, 94% y 92% de los respondientes, respectivamente, clasificó estas tecnologías como muy útiles o como puntos de inflexión. Los retos más apremiantes que afectaron al área como conjunto fueron la competencia por el financiamiento limitado, la duplicación de esfuerzos y el desarrollo inadecuado de capacidades. El 76%, 67% y 55% de los respondientes, respectivamente, identificaron estos retos como de interés primario. Las oportunidades clave para el crecimiento que se identificaron en los grupos de diálogo fueron el incremento de la colaboración y la distribución de información, la mejoría de la operatividad entre herramientas y la potenciación de la capacidad de análisis de datos a escala. Algunas restricciones parecieron afectar desproporcionadamente a grupos marginalizados. Los respondientes de países con economías en desarrollo tuvieron mayor probabilidad de reportar la restricción por los costos iniciales, costos de mantenimiento y la financiación del desarrollo (p = 0.048, tasa de probabilidad [OR] = 2.78; p = 0.005, OR = 4.23; p = 0.024, OR = 4.26), y las mujeres respondientes tuvieron una mayor probabilidad de reportar restricciones por la financiación del desarrollo y habilidades técnicas percibidas (p = 0.027, OR = 3.98; p = 0.048, OR = 2.33). A nuestro entendimiento, este es el primero intento por capturar formalmente las perspectivas y necesidades de la comunidad mundial de la tecnología de conservación, proporcionando datos fundamentales que pueden servir como referencia para medir el progreso. Vemos un potencial tremendo para que esta comunidad amplíe la visión que definen, en la cual la colaboración se sobrepone a la competencia; las soluciones son abierta, accesibles e interoperativas; y las herramientas intuitivas de procesamiento capacitan la traducción veloz de datos a acciones de conservación.


Assuntos
Conservação dos Recursos Naturais , Tecnologia , Feminino , Humanos , Masculino
18.
J Anim Ecol ; 91(1): 112-123, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726278

RESUMO

To conserve wide-ranging species in human-modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human-wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations. We analysed GPS data of 66 free-ranging elephants in the Serengeti-Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (<0.6% time in agriculture; 26% of population), sporadic (0.6%-3.8%; 34%), seasonal (3.9%-12.8%; 31%) and habitual (>12.8%; 9%). Sporadic and seasonal individuals represented two-thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals. Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders. Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human-wildlife coexistence.


Assuntos
Elefantes , Agricultura , Animais , Animais Selvagens , Conservação dos Recursos Naturais/métodos , Ecossistema , Percepção
19.
Front Microbiol ; 12: 718546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690964

RESUMO

African Swine Fever (ASF) was reported in domestic pigs in China in 2018. This highly contagious viral infection with no effective vaccine reached pandemic proportions by 2019, substantially impacting protein availability in the same region where the COVID-19 pandemic subsequently emerged. We discuss the genesis, spread, and wide-reaching impacts of this epidemic in a vital livestock species, noting parallels and potential contributions to ignition of COVID-19. We speculate about impacts of these pandemics on global public health infrastructure and suggest intervention strategies using a cost: benefit approach for low-risk, massive-impact events. We note that substantive changes in how the world reacts to potential threats will be required to overcome catastrophes driven by climate change, food insecurity, lack of surveillance infrastructure, and other gaps. A One Health approach creating collaborative processes connecting expertise in human, animal, and environmental health is essential for combating future global health crises.

20.
Curr Biol ; 31(18): 4156-4162.e5, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34343478

RESUMO

Prolonged maternal care is vital to the well-being of many long-lived mammals.1 The premature loss of maternal care, i.e., orphaning, can reduce offspring survival even after weaning is complete.2-5 However, ecologists have not explicitly assessed how orphaning impacts population growth. We examined the impact of orphaning on population growth in a free-ranging African elephant population, using 19 years of individual-based demographic monitoring data. We compared orphan and nonorphan survival, performed a sensitivity analysis to understand how population growth responds to the probability of being orphaned and orphan survival, and investigated how sensitivity to these orphan parameters changed with level of poaching. Orphans were found to have lower survival compared to nonorphaned age mates, and population growth rate was negatively correlated with orphaning probability and positively correlated with orphan survival. This demonstrates that, in addition to its direct effects, adult elephant death indirectly decreases population growth through orphaning. Population growth rate's sensitivity to orphan survival increased for the analysis parameterized using only data from years of more poaching, indicating orphan survival is more important for population growth as orphaning increases. We conclude that orphaning substantively decreases population growth for elephants and should not be overlooked when quantifying the impacts of poaching. Moreover, we conclude that population models characterizing systems with extensive parental care benefit from explicitly incorporating orphan stages and encourage research into quantifying effects of orphaning in other social mammals of conservation concern.


Assuntos
Elefantes , Animais , Conservação dos Recursos Naturais , Crime , Dinâmica Populacional , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA